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OF YAW DAMPER DYNAMICS ON THE STABILITY OF AN AIRCRAFT
EQUIPPED WITH A SECOND-ORDER YAW DAMPER

By Albert A. Schy and Ordway B. Gates, Jr.
SUMMARY

A method is described for investigating the effects of the dynamic
response of an autopilot on the stability of an aircraft-autopilot com-
bination. The method is based on a study of the constant-damping curves
obtained in a plane defined by varying two of the autopilot parameters.

- The dynamics of the autopilot are assumed to be describable by a second-

order differential equation. The effects on the system stability of
varying the gain, natural frequency, and damping ratio of the automatic
damper are investigated, since these parameters determine the dynamic
response of the automatic damper.

The method is applied to the analysis of the lateral motion of an
airplane equipped with a second-order automatic yaw-rate damper. For
any condition of the airplane, an optimum combination of values of auto-
pilot natural frequency and damping ratio are shown to exist.for any
given gain or required damping. A simple, analytical expression is
derived for obtaining a close approximation to these optimum points by

.ignoring the effects of the aperiodic characteristic modes of the air-

plane. The assumption that these aperiodic modes may be neglected in -
considering the effect of the yaw damper on the Dutch roll oscillation
is used in all the subsequent analysis. Expressions are derived for _
the maximum damping obtainable under various conditions. For any given
natural frequency and damping ratio of the ‘autopilot, excessive auto-
pilot gain will always cause the autopilot osc1llatory mode to become

. unstable.

Finally, the problem of designing an efficient yaw damper which
will improve the damping of the Dutch roll oscillation for various
flight conditions of an airplane is considered. A simple method of
design is illustrated by applying it to three fllght conditions of an

' alrplane.

Calculated motlons, based on the assumption of three degrees of
freedom for the lateral alrplane motion, are presented. They agree
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with the results obtained from the constant- damplng-curve analysis when
the aperlodlc airplane modes are neglected.

INTRODUCTION = = IS

Recently, a great deal of interest has been shown in the use of
automatic stabilization devices for improving the damping of the lateral
(Dutch roll) oscillation of aircraft designed to travel at transonic and
supersonic speeds. The analyses of such automatic stabilization systems
may be divided into two classes. In one kind of analysis the effects of _ D
various types of autopilots on aircraft stability are considered, and SN
usually the autopilot is assumed to be an idealized system with no lags. : .
In the other kind of analysis the effects of the dynamic response of a
particular type of stabilization system on the stability of the alrcraft—
autopilot combination are considered.

Some investigations of the effects of various types of idealized
autopllots on airplane lateral stability are reported in references 1 _ o
to 3. References 1 and 2 are theoretical analyses, whereas in refer- - ) PO
ence 3 experimental results are compared with theoretlcally predicted S
effects.

Analyses of the second kind, in which the effects of certain types
of dynamic response in a given stabilization system are considered, have
involved various approaches to the problem of determining the stability
of the complete system. The well-known frequency-response analysis has
been used in many papers (for example, in ref. L). Applications of
Nyquist's stability criterion, which was orlglnally developed for feed-
back amplifiers, have also been used. For example, in reference 5
Nyquist's criterion is extended to systems with constant time lag in’
the feedback circuit.

When the conditions which will insure a given amount of stability,
rather than just neutral stability, are sought, the use of constant-
damping curves has been found convenient. The method is described in -
reference 6, and an example of its application is furnished by refer-
ence 7. In reference 8 a semigraphical method is developed for obtaining
. the conditions which insure neutral stability of an airplane- autopilot
system when a constant time lag in the autopilot is assumed; also, a
procedure is indicated for using the method of constant-damping curves
to determine the conditions which insure a given amount of damping.

This method is described in detail in reference 9.

In the present paper the constant-damping-curve analysis is applied » L
to an airplane-autopilot system in which the autopilot dynamics are N
represented by a second-order differential equation. Generally; the » S
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actual frequency response of most autopilots (especially yaw dampers)
is better approximated when a second-order differential equation is
used to describe the dynamic characteristics of the autopilot than when
the constant-time-lag response is assumed. Physically, this assumption
implies that the autopilot may be represented as a damped oscillatory

- system. The present Paper examines in some detail the effects on the
airplane-autopilot stability of variations in the gain, natural fre--
quency, and damping ratio of the autopilot. :

SYMBOLS

A, B coefficients of second-ordervdifferential'equation for auto-
‘ pilot dynamics (see eq. (1))

b ~ wing span, ft

~VZCp,

Cl=

2oy, (Kp2 - 22

Ky®
c, trim 1ift coefficient, W cos 7/gS
C, ' rolling-moment coefficient, Rolling moment/qu *
Cn Yawing-moment coefficient, Yawing moment/qu
Cy lateral-force coefficient, Lateral force/qS
dc 3y - \ aC
1 Y - Z¥n
C = —t Cy, = —= C = ==
LY I8~ 3B "B T 38
oC, oCy o =%
CZP = SEE Cyp SEE np SEE
2v v L2V
33 3y o %y
CZI‘ = oy CYI‘ = B-T_B Ny = E
v 2v 2v
- _ OCq
‘s = 55

D © time-derivative operator, d/dt
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e F(D) characterlstlc polynomlal of alrplane autopllot system
Fo(D). characterlstlc polynomlal Sf alrplane alone
1 d°F(R)
fn(R) = =
n. an
i= V-l
K ' gearing ratio of second-order autopilot, deg/heg/sec
K, gearing ratio required for an ideal no-lag rate dampér-to J
r ‘ provide a given amount of damping, de%/aeg/sec » ' ‘ : ‘ij
Ky nondlmen51onal radius of gyration in roll about 1ong1tud1nal
stability axis ' k
- Ky nondimensional radlus of gyratlon in yaw about normal o : - T
H— stability axis : L BN
Kxz, 3 ﬁSndimensionalrproduct-of-inertia parameter -
m ' mass of airplane, slugs o
: , !
n an integer - ¢5
P, Q- coefficients of a quadratic factor of characterlstlc equation ‘ ‘f;

of alrplane autopilot system

~

Pos Qo coeff1c1ents of Dutch roll quadratlc (see eq. (10))

g

P =
a dynamic pressure;’ %pv2, 1b/sq £t R
'Rv real part of’characteriétic root; sec~1 - . ‘, '\'ffﬁ;
r = DY ’?
S A wing area, sq £t ' f
’ Tl/2f time for- amplltude of osc1llat10n to damp to one-half 1ts ;-  > ;‘v':fi

orlglnal value, sec

L

t time, sec \ : L L - R
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o R

<« ® o T v

e

®p

o

L],
[ 1p(D)

steady-state velocity, ft/sec
weight of airplane, 1b

angle of sideslip, radians unless otherwise specified

- flight-path angle, radians

deflection of control surface, deg or radians
damping ratio of second?order autopilot

relative-density factor, m/pSb

air density, slugs/cu ft

angle of bank, radians unless otherwise specified

‘angle of yaw, radians unless otherwise spécified

angular frequency (always referred to simply as "frequency"),

radians/sec

frequency of Dutch roll oscillation, radians/sec

natural freqﬁency of second-order autopilot, radians/sec '

‘transfer function of airplane

transfer function of autopilot

Subscripts:
cr critical”
max

maximum

ANALYSIS

Preliminary Discussion

The dynamics of an. autopilot uséd for aircraft stabilization can
often be represented by a differential equation of the type

DS + ADS + BS = KBX

,

(1)
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Here ©® is the deflection of the control surface actuated by the auto- . !
pilot, and X 1is the component of alrplane motion to which the ‘auto-
pilot is sensitive. In general, X may be any combination of the air- 5
plane degrees of freedom or their time derivatives, or both. When B ‘ .
is positive, as it must be for stable autopllots, let A = QCab and N -

B = wo2. Then equatlon (1) becomes

D% + egmona + %25 = K(DOQx‘ , o (2)

Although- A and B are often more convenient to use for purposes of
analysis, the equivalent parameters ¢ and w, are more meaningful

physically. Most of the results of this paper will therefore be pre-
sented in terms of these parameters. The parameter w, 1is the natural

(undamped) frequency of the autopilot system and the parameter ¢ is
the damping ratio, that is, the ratio of the actual damping of the
system to the critical damping. The parameter - K which appears in
equations (1) and (2) is variously called the amplification factor, the
gain, or the gearing ratio. An autopilot which may be represented by
equation (1) or (2) is often called a second-order autopilot, since the
dynamics of the autopilot are represented by an expression involving - R
time derivatives of the control deflection up to and including second- i " L
order derivatives.

The coefficients of the characteristic equation of an airplané
equipped with a second-order autopilot are functions of the stability = :
derivatives and mass characteristics of the airplane and of the three -
autopilot parameters K, wg, and t (or K, A, and B). These coef-
ficients are often called the stability coefficients. If the stability
derivatives and mass characteristics of the airplane are known for a
given flight condition, and if one of the autopilot parameters is _
assigned some reasonable value, then the stability coefficients of the
airplane-autopilot system are functions of the remaining two autopilot
parameters only. Curves of constant damping of the characteristic modes
of the total system may therefore be drawn in the plane defined by con-.
sidering these two parameters as independent variables. Methods of
obtaining such curves, with particular application to oscillatory modes,
are discussed in references 6 and 7. From an examination of the constant-
damping curves the ranges of values of the two independent autopilot
parameters which will provide a given amount of damping to the oscilla-
tory modes of the airplane-autopilot system can be determined. Moreover,

a detailed study of these constant-damping curves yields a considerable
amount of insight into some of the fundamental properties of the motions
of airplanes equipped with second-order automatic stabilization systems. ‘ \
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'Application to Second-Order Yaw-Rate Damper

Equations of motion.- The method has been applied to the analysis
-of the effect of a yaw-rate damper on the lateral stability of an air-
plane. When the dimensional time-derivative operator is used, the
lateral equations of motion are

\

2u DB - % c’YBB + 20Dy - %CLd = %’ Cy . (3)
2 ' ‘ .
VS o g 22, 1V 24 1V
- — - - - + - o - =
7 CngB + 2upKz DY - = = Cy DV + 2upkyzDY 5% cnppgd
2 2 | - , :
v Cugd - 15 Cn | Y
. . o
v 2y LY °plg - LV ==
2 CigP + 2upKygD™¥ - 5 - C DV + 2upky DY 55 CZPD¢ o c;  (5)

In these equations the assumptions are made thaf ‘CYP = CYr =7=0

and that the oniy result of the control deflection & is a yawing
moment. The equation of motion of the yaw-rate damper, written in
the form of equation (2), is '

DB + 2LwgDd + w 25 = Ky 2Dy (6)

The complete characteristic equation for the equations of motion
(3) to (6) is a sixth-degree equation. In fact, if - Fo(D) be the usual
fourth-order- characteristic polynomial for the lateral degrees of free-
~ dom described by equations (3) to (5) (see ref. 2), then the complete
characteristic equation for the airplane-autopilot combination is

]

‘ g2 7
2 : 2 v : el v 22
F(D) (D + eg@ob + Wy )FO(D) g CpgKog <2ubD -5 CYB)(E%KX D= -

¢, p) - ¥ ¢
Zp) 53 Llp

-
o<

Il
o

(7)
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The characterlstlc modes obtalned from this equation’ are usually two , P
oscillations and two aperiodic modes. In most cases the two aperiodic S
modes and one of the oscillations may be associated with the lateral %
motion of the airplane, whereas the second oscillatlon may be associ- o
ated with the motion of the autopilot system.

Choice of varlable autopilot parameters for constant-damping
curves.- If all the parameters in equations (3) to (5) are known for (
an airplane in a given flight condition, the effects of K, wg, and §
on the lateral oscillatory stability of the combined system can be :
determined by varying these parameters in equation (7), as is shown in -
appendix A. One of these parameters must be fixed if the stability
boundaries are to be plotted in a plane as described in appendix A, and
therefore the relative convenience of fixing each of the three param-
eters should be considered. Since the dynamic characteristics of the
autopilot may be expressed in terms of its frequency response, a study
of the effects of the three autopilot parameters on this frequency
response should provide some insight into the question of whlch two
parameters should be varled 51mu1taneously, / Ll

The transfer functlon of the stabilizing autopllot may be obtalned x
‘from equation (6) . : ' \

@@ﬂ<mé fop? o
~F _1_)2+;2ng1)1+%2 AR

Therefore, the expression for the autopilot frequency response'is o . ’;ﬂ

16P(w)

/o] (1) = X = Rple)e (9)

1 - + 21§ S : g
%2 0 | |

The~frequency response'of the'autopilot'isbobtained from equa-
tion (9) by plotting the amplitude RP(w) and phase angle 6p(w) of

the complex number [@/D:] (iw) against . The phase angle is inde-

pendent of K, whereas the magnltude at any value of w is proportional’
to K. Thus the phase-angle curve and the shape of the magnitude curve _
both depend only on .§ and ®,, and the gearing ratio simply acts as an
amplification factor on the magnitude curve. From this point of view, ,
it would seem desirable to select reasonable values* of K and allow § ‘ RS
and ®, to be the variable parameters in equation (7). A study of the L

stability boundaries in the ‘fwo-plane would then show the effeet of .




2Q

NACA TN 2857 B , 9

varying the shape of the autopilot frequency response on'the stability
of the total system, whereas the variation of K would show the effect
of varying the amplification factor. The stability boundaries were
therefore first calculated in the {wy-plane, and some of the effects

of varying K on these curves were 1nvest1gated

Since the gearing ratio K . is in many respects the most important '
parameter determining the stability of the total system, stability bound-
aries were also obtained in the Kwy-plane for fixed values of ¢. This
method of plotting the stability boundaries has two distinct advantages.:
First, the two most important parameters, K and g, are allowed to

vary. Second, the fixed parameter § is known to be between O and 1

- for stable oscillatory autopilot systems; therefore, the effect of

varying ¢ on the stability boundaries in the Kmo—plane can be deter-

-“mined fairly easily by choosing several values of ¢ which will span -

this range.

_Constant—damping curves with gearing ratio fixed; three degrees of
freedom.- In order to investigate the effect of the second-order yaw
damper on the stability of the system, values of the alrplane parameters
were inserted into equations (3) to (5) to correspond to a cruising
flight condition for the airplare described in.table I. The Dutch- roll
oscillation for this flight condition has a period of 1.30 seconds and
Ty/p of 2. 60 seconds.

In order to investigate the type of constant-damping curve which
appears in the fwo-plane (or AB-plane) for constant K, a value of K
was chosen which would give good damping if used in a perfect propor-
tional yaw damper that has no inertia or damping. The value K = O. 086
degree of rudder deflection per degree per second of yawing velocity ‘
was chosen, which would make T1/2 of the Dutch roll oscillation equal

to 0.75 second. The constant-damping curves in the AB-plane were then
drawn for this value of K by using the equations given in appendix A,
and are shown in figures 1 to 5. The frequencies of the modes on a

given curve vary from zero to infinity, and typ1ca1 values are shown on

" the individual curves.

As pointed out in appendix A, it is simpler to6 obtain the curves
first in terms of A and B and then substitute the more significant
parameters ¢ and w,. However, for a preliminary investigation of
the general types of curves and the manner in which they change as R
and o (the damping and frequency parameters) are varied, continued
use of the AB-plane is more convenient because negative values of B
may be considered, whereas the parameters { and w, have an obvious

physical significance only for positive values of B. .For this reason,
the typical curves of figures 1 to 5 are drawn in the AB-plane. These
figures are presented and discussed primarily to familiarize the reader -
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. & . -
with the general types of curves which occur, so that the later com- ‘ _é
parison of the curves in the wo-plane will not be too confusing. The - o
practically significant portlons of the curves are essentlally the same , "
~in either plane._ :

Figure 1 presents the zero-damping curve, which is continuous and
crosses itself to form a loop. The loop has no practical significance,
since it merely defines the region of autopilot parameters for which
‘there are two unstable oscillations. The hatch marks indicate the
boundary of the region in which all modes are stable. In .all cases the

= 0 axis is the boundary at which an aperiodic mode becomes unstable.

The curve of greatest practical importance 'is that definéd'by the
damping of the airplane without the autopilot; that is, the curve for
T1/2 = 2,60 seconds. This curve, shown in figure 2, is discontinuous.

When  approaches the airplane frequency (the frequency of the Dutch
roll oscillation of the airplane alone), both A and B become infi-
nite in magnitude. These infinities are caused by the vanishing of a
factor in the denominator of the expressions for A and B. At the ‘
airplane frequency a new branch of the constant-damping curve is-started.
The region in the AB-plane in which there are no oscillatory modes that
have less damping than the airplane alone .(indicated by hatch marks) is
bounded by this new branch of the curve. The dashed line shows the -
value B = Qg = 23. B4, where Q, 1is the constant coeff1c1ent of the &

Dutch roll quadratic, which is written as D2 + PoD + Qy- The ‘signifi-
cance of this value will be discussed subsequently. ‘

Figure 3 shows a typical curve for a damping somewhat greater than
that of the airplane alone. It has two points of discontinuity and
three branches. Thus, the airplane-damping curve shown in figure 2 is
a critical curve, separating the continuous curves for less damping
from the doubly discontinuous curves for greater damping. The two .
critical values of w are very close, so that the branch of the curve : \
in the negative-B region corresponds to a-very small range of .

This branch of the curve is of academic interest only. The part of the
curve in figure 3 which forms the significant boundary is again the
curve in the upper right quadrant of the plane, defining a reglon of
better damplng indicated by hatch marks. .
The curve in figure 4 is for Tl/2 =0.75 second the damplng

which the airplane-autopilot oscillation would have if the autopilot

had no lags. This curve has another branch at large negative values
of B and negative A, but this branch is not shown because, as has

been mentioned, it is of academic importance only. . (Tt should be , A
noted that the significant portions of all these discontinuocus curves ‘ ' o
start at values of ® near the airplane frequency. ) The curve for T
Tl/2 0.75 second also represents a critical damping value, since o,
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for larger values of damping the curves again become céntinuous and
form loops, as shown in figure 5 for T1/2 = 0.60 second. In the

following discussion the damping corresponding to Tl/2 = 0.75 second

and the associated constant-damping curve will be called the crltlcal
damping and critical curve. : »

These curves will be discussed in greater detail. For the present
it will suffice to note that, for any gearing ratio, greater damping
can be provided by a second-order autopilot than could be provided by
- a perfect proportional autopilot with the same gearing ratio, provided

that the proper values of { and w, are chosen from a closed-loop

region of the type shown in figure 5.

Equivalent-oscillator concept.- Appendix A shows that, in deter-
mining the effect of the yaw damper on the stability of the Dutch roll
oscillation, the airplane is represented by an equivalent oscillator
whose period and damping are those of the Dutch roll oscillation.
Explicitly, the assumption is made that the three-degree-of-freedom
equations of motion of the airplane, given by equations (3) to (5),
may be replaced by the single equation of motion

2 | |
K 2
2ub<K22 - K—X-g—>( 2% + PDV + @ w) -5 c <8 = b2 Cy (10)
X : , »

The physical interpretation of this assumption is that the effect of
-~ the aperiodic modes on the Dutch roll stability is small. The quadratic

equation D2 + PgD + Q5 = O yields the complex characteristic root
, correspondlng to the Dutch roll oscillatory mode.

The analysis is greatly simplified by this equivalent-oscillator
concept, and it will be seen that this simplified analysis gives adequate
results. Except where otherwise specified, the equivalent oscillator is
assumed to represent the airplane in all the subsequent discussions. The
curves in figures 1 to 5, obtained from the three-degree-of-freedom
analysis, were drawn primarily as a check of the accuracy of the
‘equivalent-oscillator approx1mat10n

In figure 6 the'constant—damping curves calculated by the equivalent-
‘oscillator analysis for representative values of damping are presented in
the {wy-plane. In interpreting these curves it is essential to remember
that two oscillations are present for most of the significant points in
the Qwo-plane. One of these oscillations may generally be associated
with the airplane .and the other with the autopilot. Therefore, at every
point in the most significant regions of the {wy-plane two damping curves

must cross each other.
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All the curves previously obtained ffom the three-degree-of- freedom
analysis are presented in figure: 6, and in addition the boundary of
equal roots and the curve for Tj/p = O. 38 second are shown. Each of

the constant-damping curves starts on the boundary of equal roots at
o = 0. Before the general discussion of figure 6 is presented, the
51gn1flcance of the curve for AT1/2 = 0.38 second will be explained.

| Maxlmum damping w1th flxed gearing ratio.- As mentioned previously, ‘
the constant-damping curves for higher damping than the critical damping -
are continuous and form loops defining the regions which insure greater
damping. Since the loops become smaller for larger values of damping,

it is reasonable to assume that for some value of damping the loop will
become vanishingly small - only a cusp in the curve (see ref. 9). This.
curve then corresponds to the maximum damping which can be obtained for
the Dutch roll oscillation with a second-order yaw-rate damper for the
given gearing ratio. Thus the: cusp p01nt may be considered the optimum-
p01nt in the {w,-plane for a given gearing ratio, and this point deter-
mines the shape of the autopilot frequency response which will give the Vo
highest damping to. the Dutch roll 0501llat10n for 'a’ glven ampllflcatlon
factor K : . S

These optlmum p01nts may be obtained by a rather simple algebralc
analysis because they correspond to a double oscillatory root-of the
characteristic equation, which is a quartic equation when the equivalent-
oscillator concept is used. The derivation of the optimum-point char-
acteristics is presented in appendix B. The damping and frequency of
the double osc1llatory mode are assumed to be glven by the characterlstlc

equation .
A

(02 + P> + Q) = ov’ I N (11)

. As shown in appendix B, the value of Q may be obtained by solving the '
guadratic equation, for a given gearing ratio, ' :

' C,K ‘ : . - :
1 2 2 .

1+ ———— -2 + =0 : 12

‘( T EV_%>Q QQ + Qg o : (12)

For positive values of . K the larger real root in ‘equation' (12) is used.
With this value for Q, P may be obtained from the expression '

(Bt 01K)Q? - PoQ.°

1 20,(Q - Q)

(13)
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‘These values of P and Q, when used in equation (11), give the charac-
téristic root (and therefore the period and damping) corresponding 'to the
best-damped Dutch roll motion obtainable with the given gearing ratio.

In order to find the autopilot parameters A and B (or ¢ and wo)
which yield this maximum damping, these values of P and @ are sub-
stituted into the following expressions for A and B:

A=2P-P, o (14)
_ &
Qo

. The maximum damping for the.airplane under discussion for
K =0. 086'de%/aeg/sec was obtained in this manner and was found. to
_correspond to Ty/p = 0.38 second. As can be seen from figure 6, this

curve does have a cusp at the optlmum point in the gwo-plane

Since the high-damping curves in the three-degree-of-freedom
analysis also form loops, the same type of analysis can.be used to
obtain the cusp point in the Cwo-plane. The calculation of the maximum
damping would be much more complicated, however, for the thfee-degree-
of-freedom case. To show that the maximum damping as calculated by the
equivalent- -oscillator analysis is an adequate approximation to the max1-‘
mum damping for the complete airplane, the curve for T1/2 = 0. 38 second

was drawn for the three-degree-of-freedom case also

The comparison of the curves for Tl/2 = 0.38 second for the two

cases is shown in figure 7. In this figure the significant portions of
other typical damping curves are also shown. For practical purposes,‘
the equivalent-oscillator analysis is an adequate approximation to the
three-degree—of-freedom analysis in determining the required constant-

. damping curves, including the maximum-damping point. It might also be o

noted that the critical damping is not exactly the same in the two cases
(Tl/g 0. 75 second for the three-degree-of-freedom case and

T1/2 = 0. 73 second for the equivalent one- degree -of'- freedom case)

, Discussion and interpretation of damping boundaries in Qwo-plane.4
Figure T shows that there is little change in the stability boundaries
when the lateral motion of the airplane is represented by the equivalent
oscillator. This result ‘means that the real characteristic modes of the
lateral motion can be neglected in calculating the effect of the auto-
matic yaw damper on the Dutch roll oscillation. The only fundamental

o)
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difference occurs in the airplane-damping curve, Tl/2 = 2.60 seconds.

For the equivalent oscillator, this curve is discontinuous at a value of
wo equal to the airplane frequency, 4.8 radians per second. The slope

of the curve becomes infinite at this value of wy, and the portion of
the curve bounding the higher-damping region beginsbhere at € =w. In
the three-degree-of-freedom analysis,‘the curve for Tl/2 = 2.60 seconds
has a slope which becomes very large at gy = 4.8 radians per second
but remains finite. Thus the difference in the curves is negligible
for practical purposes. Since the significant portion of the airplane-
damping curve begins at @p = 4. 8 radians per second for any positive

gearing ratio, the damping of the equivalent oscillator cannot be
improved with a positively geared yaw-rate damper which has a natural
frequency less than the frequency of the oscillator itself. Flgure 7
shows that for practical purposes the same statement can be made for
the actual alrplane.

Certain general effects of varying the autopllot damping and natural_
frequency on the stability of the system may be observed in figures 6
and 7. The area of interest is the roughly rectangular region 1nd1cated
by the hatch marks in figure 2 in the AB-plane, in which both oscillatory
.~ modes have more damping than the airplane alone. The value of B indi-
cated by the dashed line in figure 2 corresponds to the airplane fre-
quency (o = 4.8 radians per second) If & is fixed at any positive

value and wgy. is dincreased, figure 6 indicates that the system damplng
increases to a maximum value at some value of wy and then .drops off,
approaching the critical damping as g, approaches infinity. Similarly,
at any fixed natural frequency greater than the Dutch roll frequency, if
the value of ¢ is increased from zero the damping reaches a maximum at
some value of ¢ and then drops off, approaching the airplane damping
as { approaches infinity. Thus, for fixed ¢ there is an opﬁimum ®g »
~and for fixed g, an optimum €. The best of all these points is the
‘maximum-damping point, which is obtained by the simple calculation pre;k
viously described. ,

JImportance of oscillation frequencies in interpreting constant-
damping curves.- From stability considerations alone, the regions defined
by the hatch-marked portions of the curves shown in figures 1 to 5 deter-
mine the values of autopilot parameters which guarantee at least the
indicated amount of damping. However, points may be chosen outside a
given region which still seem to give an airplane motion that is as well-
damped as that for points in the region. For example, figure 8 shows .
the motions obtained with autopilots having thelcharacteristics defined
by points 1, 2, and 3 in figure 6. All motions shown in this paper were
. obtained from a Reeves Electronlc Analog Computer, by use of the three-
degree -of-freedom equations of motion. The fact that these motions check
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the predictions made froﬁ the equivalent-dscillator stability boundaries
confirms the adequacy of the equivalent-oscillator analysis.

Points 2 and 3 are on the good portion (1oop) of the curve for
Tl/2 = 0.60 second, but point 1 is on the intersection. of the curves

for Ty/p = 0.60 second and T1/2 = 2.60 seconds and is outside the

good region defined by the loop. However, the actual airplane motions,
represented by the sideslip and roll motions in figure 8, are very
similar for all three autopilots, and the lightly damped mode is impor-
tant only in the rudder motion for the case corresponding to point 1
(fig. 8(a)). Actually, the effect of the lightly damped mode can be
seen in the sideslip motion of figure 8(a), but it is almost negligible.
Although point 1 in figure 6 corresponds to Tl/2 = 2.60 seconds, as far

-as the airplane motion is concerned this autopilot would seem to give as
good damping as autopilots whose characteristics fall in the loop of
Tl/2‘=_0.60,second. ‘

In order to understand why the lightly damped mode corresponding
to point 1 in figure 6 has practically no éffect on the airplane motion,
the frequencies of the modes which are predicted at this point must be
- considered. Since for the most significant points in the twy~-plane there
must be two characteristic oscillations, each of these points is actually
a crossing point of two constant-damping curves, as can be seen for
point 1 in figure 6. The general trends of the frequencies along the
damping curves are shown in figures 1 to 5. Along the final portion of
each curve (that is, the portion which approaches the ¢ = 0O axis), the
frequencies correspond to the autopilot frequency. At point 1 in fig-
ure 6 the mode on the curve for T1/p = 2.60 seconds has a frequency .
w =~ 10 radians per second, a value which corresponds to the autopilot
frequency (as can be seen from fig. 2), whereas the better-damped mode
is the airplane mode with w ®» 5 radians per second (see fig. 5).
Since the frequency of the autopilot mode is approximately twice that
of the airplane mode, the effect of the corresponding lightly damped
rudder oscillation on the airplane motion is small, for the airplane
cannot follow such rapid oscillations.

Consideration of the frequencies which occur at points along the
demping curves is thus seen to be important in attempting to predict
the type of motion which would be obtained with autopilots whose char-
acteristics are determined by these points. This frequency effect is
brought out even more strongly by figure 9, which shows the motions -
corresponding to points 4 and 5 in figure 6. In this case both points
are on the zero-damping curve. At point 5 both modes have approximately
the same frequency. However, at point 4 the autopilot frequency is the
neutrally damped one, with w =~ 13.5 radians per second, and the airplane
mode lies on one of the well-damped loop curves, which crosses the curve
for T1/2 = o at point 4. The motions shown give the results predicted
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by the analysis. .As shown in figure 9(a), corresponding to point 4, the
neutrally damped high-frequency rudder motion has little effect on the
well-damped airplane motion. On the other hand, for point 5 the effect:
" of the neutrally damped mode, which is close to the natural airplane
frequency, is the dominant neutrally damped airplane oscillation shown
in figure 9(v). Autopilots which cause very poorly damped control
motions, however, would be unsatisfactory from a practical point of

view even if their effect on the airplane damping were satisfactory.

_: Effect of varying K on curves in‘Cmo-plane-¥ The effect of gearing
ratio may be obtained by considering the effect of varying K ‘on the
curves in the {w,-plane. By using the eduivalent—oscillator\analysis,

" the critical damping is found to be Rer = -4(p, + C1K). Since the air-

plane damping is —%Po; the critical‘dampingvbecomes the airplane damping

as K vanishes. This result is, of course; necessary, since zero
gearing ratio implies no autopilot. As X is made smaller, the whole -
set of loop curves in figure 6 tends to move to the left, since the
critical curve approaches' the airplane damping curve. Conversely, as K
increases, these curves move to the .right. Also, the\loop corresponding
to any given damping larger than the critical damping must expand as X ‘
increases, since the given damping comes closer to the critical damping.
Therefore the given loop approaches the ihfinite loop asymptotic to the
critical-damping curve. Physically, this result simply means that as
the gearing ratio is increased there 1is a larger range of values of {
and wg for which a given damping larger than the critical damping may
be obtained. ' ’ '

) A clearer idea of the way in which the set of loop curves moves in
~ the {wo-plane as K varies 1s obtained by investigating the variation
" of the maximum-damping point as K varies. The position of the maximum-
damping point is itself important, because it is the optimum combination
of ¢ 'and wy for any value of K; but, also, since this point is a
kernel which is surrounded by all the loops, the motion of this point
gives a clearer idea of the motion of any loop as K varies. The -
desired variation may be easily obtained by inserting‘values of K into
equations (12) and (13), and using the resulting values of P and Q
in equations (1%4) and (15). However, a simpler and clearer method is
. shown to be possible in appendix B, wherein a value of damping is assumed
and solutions are found for the values of K, A, B, and Q which will
make this the maximum damping. This procedure clearly gives the smallest
magnitude of ' K with which the desired damping may be obtained with the
second-order automatic yaw damper, and the associated values of A and
‘B ' then may be considered as "optimum" values for the given airplane and
* desired damping. _Ip\this method equation (13) is replaced by

. 1.386 . . (18)

L
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. ‘ _ where R and Tp/p correspond to the desired damping. - Equation (14)
then gives A immediately, and Q may be obtained from the expression
= Q, * G (P - PO) S an

Equation (17) will give two values of Q, one greater than @g
and the other less than Qg. By using these values in equation (15),
the corresponding values of B are obtained, and from equation (13):

2PQ - PB - AQ
B CB

(18)

1

The smaller value of Q obtained from equation (17) gives a value
of B corresponding to a value of wg lower than the airplane fre-

quency and results in a negative K. The larger value of Q gives a
! value of wg higher than the airplane frequency and positive gearing.

‘ Flgures 10 and 11 show the variation of the optimum points. Figure 10
. shows the curve on which the points lie in the {wo-plane. Figure 11

shows the gearing necéssary to obtain any'glven damping as the maximum
damping (when the autopilot characterlstlcs are the optimum ones for
that gearing).

The point corresponding to K = O on each curve is significant
only as a limiting point, since zero gearing implies no autopilot.
Since the double oscillatory mode corresponding to the maximum damping
must approach the Dutch roll mode as K approaches zero, the optimum
point in the Cwgy-plane approaches the values corresponding to the Dutch

roll mode. Increased damplng of the system can be obtained with either
positive or negative gearing. The positive-K branch of the locus of
optimum points given in figure 10 lies in the range of values of ‘wg

higher than the airplane frequency. Thus, as mentioned previously,
second-order yaw dampers with positive gearing must have a value of .wo
higher than the airplane frequency in order to improve the damping.
Also, the variation of the optimum points on. the positive-K branch of
figure 10 shows that, if increased damping from the autopilot is sought
by increasing the gearing ratio, the natural frequency and damping ratio
of the autopilot should generally be increased simultaneously. This
fact can be of considerable practical importance, as W111 be brought

out more clearly in subsequent discussion.

, Comparison of advantages of positive and negative geaflng - If
coe negative gearings are used, wy values lower than the -airplane frequenCy

‘must be used in order to improve the damping. The poss1b111ty of u51ng '

.
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a negatively (reverse) geéredvsecond—order rate autopilot to improve the
damping seems rather surprising, since for a perfect proportional rate
autopilot, reverse gearing would simply decrease the effective Cnr and -

therefore decrease the damping. The use of reverse gearing is made
possible by the phase relations introduced between the airplane and \
rudder motions by the dynamics of the second-order autopilot. Actually,
this possibility is no more surprising than the fact that this type of '
autopilot will improve the damping with positive gearing only when the
autopilot natural frequency is greater than the airplane frequency.
Clearly, this restriction arises from the same type of phase-relation
requirement. ‘ ' '

- The use of a negatively geared yaw damper would seem advantageous
because of its properties in a steady turn. For constant yawing velocity
the negatively geared yaw damper deflects the rudder in a direction to
maintain the turn, whereas the positively geared yaw damper must be
overridden, either by the pilot or by the boost system. However, certain
objections to the use of negative gearing in an automatic damper for use
with an airplane actually make such use impractical.

The main objection to the use of negative gearing is based on the
fact that the equivalent oscillator represents the airplane only in a
given flight condition. At different flight conditions the character-
istic airplane oscillation has different values of damping and frequency;
therefore, the airplane is represented by a different equivalent oscil-
lator at each flight condition. To design an automatic damper for one
flight condition only is impractical, since this automatic damper may
have a harmful effect on the damping at some other flight condition.
Autopilot characteristics must therefore be obtained by some compromise
method which will improve any practical flight condition. Now, it can
be shown that the regions of improved damping in the {wo-plane for nega-
tive values of K are loops resembling a reflection in the A =0 axis
" of the unstable loop shown in figure 1. These loops must lie in a rela-
tively narrow range of w, values, since they are confined to values
of wp lower than the airplane frequency. Moreover, for a given magni-
tude of gearing ratio, the loop for any damping is much smaller for nega-
tive K +than for positive K. Figure 1l shows that the loops for nega-
tive values of K break down at much smaller values of damping than the
loops for positive values of K of the same magnitude. If these small
loops in the {wo-plane are drawn for a desired amount of damping for two
extreme flight conditions with different natural frequencies, the possi-
“bility of their intersecting in a region of the {wo-plane which would
give the desired damping to both flight conditions is relatively small.

For positiﬁe gearing, on the other hand, improved damping can be
obtained up to the critical damping for an infinite range of w, starting .
at a value of- w, somewhat greater than the natural airplane frequency
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in the particular flight condition. There is, therefore, an infinite
range of ®, values which will insure at least the critical damping
‘for any number of flight conditions. The minimum value of , neces-

sary is somewhat greater than the highest natural frequency of any of
the possible flight conditions of the airplane. .

Maximum damping for any gearing ratio.- The highest maximum damping
and the corresponding value of K can be obtained by determining where
the modes corresponding to the optimum points in figures 10 and 11 become

nonoscillatory. This condition will occur for P2 4Lq. By using this:
condition in equation (17), where the. p051t1ve sign corresponds to posi-
tive K and the negative sign to negative K, the followlng expre551onsv
are obtained: :

P o ;
Py = 2\[@( 2 - '\/-;:_c-) + 1> FK > 0) (19)
Ppax = 2 Qc,( 2 4o - 1) (K < 0) , (25)

w |

Since Py 1is Sma;I for lightly damped airplanes, the‘positive geafing’
ratio gives a higher value. For example, for P, = 0, equation (19)

gives a value approximately six times as large as equation (20).
Actually, these limiting values for the damping are of only academic
interest as far as application to the airplane is concerned, since they ‘
are so large as to be far above any required damplng

Constant-damping curves in Kwg-plane with damping ratio fixed.- In

order to obtain a more complete picture of the effect of varying gearing
~ratio on the stability of the system, constant-damping curves were
obtained in the Kwg-plane with € fixed. As shown in appendix A, it

is necessary to solve a ‘quadratic eQuation for the o, values, which ,
may then be substituted into an expression for K, as follows:

(Qé - R? - a?)mOQ - Egmo(PO + 2R)(m? + Re) %\wu -

(Qo + 2PgR + 2Re) (w2 + RE) =0 ‘ (21a)
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X = (ng + Py + hR)a? -

CI”O

,[iPO + 2R)w021+ egub(QO + PgR + 332) +,R(2Qo + 3P0Rl+,h32§]

C (21b)

| For the first calculations, “§ = O.3v was assumed as a reasonable .

value of damping ratio for the autopilot. A set of curves was obtained
. for this value of {. The effect of varying { -on the curves in the
Kwy-plane was then 1nvest1gated by obtalnlng several typical curves for

§ =0.6 and ¢ =

The zero-damping curve for ¢ = 0.3 (shown in fig. 12) indicates
that better-than-neutral damping can be obtained for any value of g
and for positive or negatlve gearing. This 1s true for any damping up
to the airplane damping., The boundaries for less than the. airplane
damping are of no practlcal interest, however, and figure 12 is pre-
sented only for completeness.

Figure 13 shows the alrplane damplng boundary, which is a 51mple,
continuous curve. This curve alone does not indicate clearly the region
that defines points which give better damping than that for the air-
‘plane without yaw damper. However, the axis K = O must be part of the
boundary also, since K = O implies no autopilot, which means that the
airplane has its original damping. In order to verify that the region
defined by the hatching in figure 13 is the good region, a curve was
drawn for a slightly greater damping (Tl/g 2.50 seconds). This curve

is shown in figure 14 and confirms the fact that the region insuring
damping greater than that of the airplane is as shown in figure 13.

The:results of figure 13 confirm several of the previbus conclu-
sions concerning negative gearing which were obtained from figures 10

and 11. A relatively small region is present in the Kwy-plane in which -

improved damplng can be obtained with negative K, and this region is
confined to frequencies less than the airplane frequency.

Figure 14 shows that the regions of negatlve K which w1ll glve
improved damping are loops in ‘the Kwg-plane. Thus, the- maximum damping’
for negative K may be obtained from:the cusp point corresponding to
the breakdown of these loops for any values of (. Since { is con-
stant, a particularly simple expression can be obtained for Rp,y.

If ¢t and o, are used instead of A and B, equatlons (14) and (15)

may be used in equatlon (17), and the result is

we
i
v
e
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w, = - (K > 0) (22)
P, ,
% + 2
‘Do=\l— 2 S (K <0)  (23)
1+ ¢

for the values at the cusp points. These values are given by the
two curves in figure 10. The maximum damping for negative K -at any

value of { may then be obtained by using equation (23) in equa-

tion (14) to yield

)' -v ) p @; P g \‘ ) o
R "f'(‘e‘*f)ug (k<o) (2b)

If the values of Py and Qg for the Dutch roll of the airplane under
consideration are used and { 1is taken equal to 0.3, equation (24)
shows that the maximum damping with negative gearing corresponds to
T1/2 = 1.0 second.

Figure 15 shows the curve for this value of damping. The cusp ’
p01nt for negative gearlng occurs at g = 3. 96 radians per second and
= -0.035 deg/éeg/sec. For p051t1ve gearing, on the other hand, an
1nf1n1te range of Wy values which will give better than this damplng
with ¢ = is seen to be available. This bears out the previous
statement that the design, with regard to damping ratio and natural fre-

quency, of a compromise autopilot which will improve a variety of flight
conditions is less restrlcted when p051t1ve gearing is used

Since the curve of figure 15 is typical of the curves for dampings
somewhat greater than the airplane damping, it will be discussed in more
detail. The curve has two separate branches and the discontinuity occurs
between w = 4.8 radians per second and ® = 5 radians per second. This

critical frequency actually is wcr‘=,VQo - R® (see eq. (21a)). From -
what has been said previously, the portion of the curve of greatest

~ interest is the second half (for positive K). This starts at the criti-

Py + 2R . ,
cal frequency at  wy = » and K = -2 _____. This value of K is the

Cy

»value for which an ideal autopllot (one with no lags) would yield the

given damplng, and will be denoted as Ko. The bottom part of the bound-:
ary can be seen to represent the values of K and @y Wwhich make the




.

airplane mode have the given damping, since the critical frequency is
near the airplane frequency. On the othern hand, the top part of the
boundary represents the values of K and w, at which the autopilot
mode has the given damping, since the values of along this part of
the curve are very close to the corresponding. values of wg.

Figure 16 shows the boundary for T1/p = 0.60 second. The loops

for negative damping have disappeared. This curve is the cusp curve

for positive K, obtained by using equation (22) in equation (14). This
fact has little practical significance, however, since there is no funda-
mental change in the shape of the curves at this damping. : '

For 1afge values of damping, furthér changes occur in the type of

damping curves in the Kw,-plane. For small values of R, equation (2la)
gives real solutions for o with any value of . However, for larger

values of R the discriminant of equation (21a) changes sign for 'certain

combinations of ® and R, so that no real solutions for exist.
Setting this discriminant equal to zero yields '

(o %—V'RE)2 + EE(PO + 2R)2 - 2R(Po + 2R) - 2Q;| (o + R2) +
| Qo[éo + 2R(Pg + 2Ri]'= o o - (25)

When this equation has a positive, real root for the gquantity. w? +'R2,
this root determines the range of real values of o for which the solu-
tions for o  in equation (2la) are complex. The value of R for =

. which real roots occur in equation (25) is obtained by equating the
discriminant of this equation to zero to give '

@- A= (2- B)Per+ P(ER7 - a) =0 (26)

For the airplane being considered, with .t = 0.3, the values of R
obtained from equation (26) are R = -1.58 and R = 1.61. Since only
the positive-damping boundaries are of interest, only the negative value
(which~corresponds to Ty/p = 0.4h second) need be considered. For this
value of damping, the range of values given by equation (25) becomes a
single value. For greater damping, equation (25) gives a finite range
of values of  ® which will not occur at any real value of g. Thus,
no value of ® in this range can occur for the required damping when
¢ = 0.3. The constant-damping boundaries for these larger values of
damping, which are characterized by the absence of a given range of
® values, are of a somewhat different type from the curves for lower
damping. : '

22 o ; S ~ NACA TN 2857
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As an example of the type of curve which occurs for large damping
values, the boundary for Tl/2 = 0.25 second (R = -2.77) is presented,
in figure 17. Substituting ¢ = 0.3 and R = -2.77 into equation (25)
gives ® = 4.3 radians per second and o = 6.3 radians per second.

That is, no values of ® in the range 4.3 <w < 6.3 radians per second
occur on this curve. Some of the significant features of this curve
will now b€ described, since it is typical of the higher-damping curves.

The significant portion of this curve defines the same general type
of wedge-shaped good region as was present for lower dampings. On the
lower part of the significant boundary, the frequency of the mode with

- the given damping is in the range 4.0 < w < 4.3 radians per second;

that is, the frequency varies between the critical frequency and the
smaller frequency given by equation (25). These frequencies clearly
represent the airplane mode. At the point of the wedge the previously
discussed discontinuity appears. At this point both the airplane and
autopilot modes have the same damping. On the upper part of the bound-
ary the autopilot mode has the required damping and the alrplane mode
has higher damping.- ;

Figure 18 is a collection of the significant portions of the damping
curves previously discussed. This figure shows that, as the required
damping increases, the wedge-shaped region in the positive Kﬂb-plahe
which insures this amount of damping moves upward and to the right. The
figure also shows that the damping obtainable with a second-order yaw
autopilot cannot always be increased merely by increasing the gearing
ratio. Theé reason is that, for a given value of Wy, increasing K

beyond a certain value makes the autopilot mode less stable. Clearly;

‘more damping can be obtained by increasing o, at the same time that

K 1s'1ncreased These results confirm the statement made in the dis-
cussion of figure 10 that it may be necessary to increase the natural
frequency when the gain is increased.

It is important to remember that, as in the fwg-plane, two oscil~
lations are present in the regions of most interest in the Kwg-plane.

. The typical frequencies given on the individual boundaries indicate that

the portions of the wedge-shaped boundaries where K. is high correspond
to the autopilot mode having the given damping, whereas the parts where
K is low correspond to the airplane mode having the given damping.

Figure 18 seems to indicate that an infinite amount of damping -
might be obtainable by simultaneously increasing K and gy, in contra-

diction to the discussion concerning figures 10 and 11. However, further
changes occur in the type of curve at larger damplngs., Equation (2la)
indicates that a change might be expected when R > J_”, since the quan—

tity Qo - R2 w2 does not go through zero for any value of w. That
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is, there no longer is a critical frequency wcr =\/Qo - R2. Moreover,
the good regions as previously shown do not take into account'the'boundA
ary of equal roots. ‘That is, within the good regions no oscillation has
less damping than the indicated amount; however, a real root with less
damping than the indicated amount may be present at points above the -
boundary of equal roots. The explanation is as follows. At the o =0
point of a given high-damping curve (which point is on-the boundary of
equal roots) there are two equal real rqots with the indicated amount-
of damping. However, at points above the boundary of equal roots, one
of these real modes will decrease in damping. The oscillatory mode
which breaks down into two real modes at the boundary of equal roots in
. the Kwo-plane is the airplane mode, since, as can be seen from fig-

ure 18, oscillations at autopilot fregquency do occur above the boundary
of equal roots. Thus, for points above this boundary the airplane mode '
becomes nonoscillatory. The physical reason for this phenomenon is that
large gearing ratios cause the airplane mode to be overdamped. The '
boundary of equal roots in the {wy-plane, on the other hand, corresponds
to large ¢ values. Therefore, as can be seen from the curves, the
mode which is overdamped at points above this boundary is the autopilot
mode. ' ! " . C

~~ Strictly speaking, the boundary of equal roots should be considered
as the upper limit of the good regions shown in figure 18. ° Actually,
this restriction is necessary only for the regions of very high damping.

For example, when the point K = 0.60 deg/ﬁeg/Sec and @, = 21.5 radians

per second is taken on the boundary for Tj/p = 0.60 second in fig-
ure 18 and the characteristic roots are found, the autopilot mode has
the given damping T1/2 = 0.60 second at w = 21 radians per second,
whereas the airplane dsCillation‘breaks down into two'wéll-damped non-
oscillatory modes with Tl/2 = 0.22 second and T1/2 =i0.09 second.

Thus, for this moderate damping, points -above the boundary of equal
roots still give the required damping. o )

For extremely large values of damping, however, the boﬁndary\of
‘equal roots becomes important. In fact, the maximum damping of the
complete system at a fixed value of { is the largest negative value
of R occurring on the boundary of equal roots. The points on the
~ boundary of equal roots are obtained by using ® = 0 in-equations (21a)
- and (21b). The largest value of R occurring on the boundary is '
‘obtained by setting the discriminant of equation (2la) equal to zero
with ® = O. This procedure gives the quartic in R (from eq. (25)
with o = 0): : o ' '

- . B

(2 - D+ erfet? - 1R + (%o + 200)R° + 2PaoR + @7 = 0 (1)
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The largest negative real root of this equation is the value of the
maximum damping. For the example considered, this value is R = -5.11
and the corresponding Tl/2 = 0.14 second. For this value of damping,

the good region becomes a single point on the boundary of equal roots.
The airplane mode is a double real root equal to -5.11, and the auto-
pilot mode is an oscillation with the same amount of damping. ' The
autopilot ‘characteristics for this maximum-damping point were used in
calculating the motion subsequent to a 5° sideslip disturbance (fig.: 19)
For practical purposes, the airplane motion can be considered as non-
oscillatory, since the autopilot oscillator is of too high a frequency
to have an appreciable effect on the airplane. The well-damped nature
of the Dutch roll motion (which has now become nonoscillatory) is evi-
dent in the B-motion. The slow return of the roll motion is due to the
spiral mode. Although the lightly damped spiral mode is generally not

~ considered troublesome, it is necessary to keep in mind that the dis-

cussion in this paper deals only with the improvement of the damping of .
the Dutch roll mode, and that the two aperiodic modes in the alrplane s
lateral motion have been ignored. ' : :

Effect of varying { on curves in the kmo-plane.- In order to

obtain an idea of the effect of changing ¢ on the curves in the
Kwo-plane, a comparison of the boundary of equal roots, the airplane

demping boundary, and the boundary for T1/2 = 0.60 second is presented

in figure 20 for ¢ = 0.3, 0. 6 and 0.9. Although the region of improved
damping with negative gearing increases in size, the narrowness of the
frequency range and the other difficulties previously mentioned still’
make the use of negative gearing impractical. The increased slope of

the upper part of the boundaries simply implies, as would be expected,
that for larger values of ¢, larger values of K are required at any
value of Wy to make the autopilot mode become unstable. The variation

in the position of the boundary of equal roots simply implies that the

more hlghly damped mode associated with each point on a given boundary
tends to become critically damped at lower gearings as . increases.

None of these variations appear to be wery important practically.
Indeed, the most important fact about the effect of varying £ is that
the bottom part of the boundary approaches the same value of X at
large values of wy for all values of . This behavior is due to the
fact that the asymptotic value of K is Kg, the value required to
obtain the given amount of damping with an ideal autopilot. Now, the
bottom part of the boundary can be seén to be the Ilmportant part, since
it gives the lowest value of K for which the system has the required
damping; also, the mode which attains the required damping at 'the points
on this part of the boundary is the airplane mode. The flatness and -
invariance with { of the bottom part of the boundary imply that the
minimum value of K for which a given damping may be attained is rela-
tively invariant for changes in ¢ and Wy at fairly large values

I
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of wg. This fact will be used in the next section to obtain a simple
rule-of-thumb method for designing an efficient yaw-rate damper which
will insure a required damping for several extreme fllght conditions of
an airplane using low gearing. ‘

Design of Compromise Yaw-Rate Damper

. For the sake of simplicity, the autopilot to be designed will be
assumed to provide only a yawing moment proportional to yawing velocity,
as in the previous analysis. It may therefore be called a Cnr auto-
pilot: Values of K, t, and. wgy which will efficiently improve the
damping of an airplane in various flight conditions are desired. The
criterion- of the effibiency of the autopilot -will be that the gearing
ratio required for the autopilot must be small. This means that the
autopilot power required will be small. Moreover, the use of small
gearing makes the yaw damper easier to override’in steady turns.

Table II gives the parameters used for the three flight conditions
of the airplane chosen for the present example. Case I is a high-1lift-
coefficient, low-wing-loading landlng condition at sea level. Case II
is a low-lift-coefficient, medium-wing-loading cruising condition at
30,000 feet. To complete the picture, case III is a high-1lift-
coefficient, high-wing-loading cruising condition at 30,000 feet. These
cases will serve as examples to illustrate the method.

Table IT shows that the Dutch roll oscillation in case II is very
poorly damped, since it requires dlmost 7 seconds to damp to one-half
amplitude. Although the other two cases are not so poorly damped, they
are still unsatisfactory. Calculated motions for the three cases in
response to a 5° disturbance in sideslip are .shown in figure 21. No
attempt will be made to set up any complicated criteria for adequate
damping. Instead, the criterion chosen for purposes of illustration
will be that the Dutch roll oscillation should damp to one-half ampli-
tude in 1 second or less at any flight condition. Actually, the auto-
pilot may be designed to insure a different amount of damping for each
fllght condition, in case one of the fllght conditions is requlred to
be more stable than another. :

The fundamental problem is to find the set of points (K,wq, §) which

satisfy the given damping criterion for all three flight conditions.
Moreover, the minimum possible gearing is desired. The value of Kp
for Tl/2 1l second 1is calculated for each flight condltlon From

the equlvalent osc1llator analy51s, the value of KO is shown to be

1

1.386"
Ty/2

1
= — - P
C (¢]
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i

Substitution from table II gives the values of K5 as O. 1213, 0. 0698
and 0.137h de%/ﬁeg/sec for cases I, II, and IIT, respectlvely

If the largest of these values of K, (correspondlng to case III)
is chosen for. the gearing of the autopilot, the curve for Ty/e = 1 sécoﬂ@
in the fwo-plane will be the critical curve for case III, but for cases I
and II the curve for Tl/2 = 1 second will be a curve between the air-

plane damping and the critical damping. Each of these three curves
defines an infinite region in the- upper right portion of the fw,-plane
as the region insuring better damping. Therefore, in the {wy-plane an
infinite region of points which are common to these three regions must
exist and can be used with this value of K +to obtain better damping
than Tl/2 1 second for all three flight conditions. A plot of thgse

" regions is shown in Ffigure 22(a), where K = 0.1k deg/éeg/sec has been

used. The plot shows that any set of values in the g&o—plane which

insures T1/2 = 1 second for case II, the high-frequency case, will
also insure this amount of damping for the other two cases. However,
any point in this region is at a value of wgy considerably above the

optimum for cases I and III. As was previously pointed out, for such
values of wp the minimum value of K for which a given damping may

 be obtained does not differ much from K,. The implication is that the

mlnlmum value of K for which T1/2 = 1 second may be insured for
case III, while at the same time Tl/E remains less than 1 second for

case II, is not much- less than 0.1374 deg/heg/sec. To confirm this
hypothesis, the necessary points on the curves in the {wy-plane for
Tl/E = 1 second were obtained for K = 0.12 de%/heg/sec and'

= 0.10 de%/aeg/Sec, and the significant parts of these curves are
shown in figures 22(b) and 22(c).

For values of K < 0.1374 deg/&eg/sec the curve for Tl/2 = 1 second

. for case III must be a loop, since the damping is higher than the critical

damping. Figure 22(b) shows ihat when K = 0.12 de%/ﬁeg/sec this loop

is still large enough to intersect the region where T1/2 < 1l second for

case II. The hatched region on figure 22(b) is the region which will
insure T1/2 < 1 second for all three flight conditions at K = 0.12

de%/aeg/sec. Figure 22(c) shows that the lobp for case IIT has become’
too small to intersect the region where Tl/2 < 1 second for case II

when K = 0.10 deg/ﬁeg/sec. Therefore, a value of Tl/2 < 1 second
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cannot be obtalned for cases 11 and IT1 51multaneously when K = 0.10
deg/aeg/sec. The curve for case I is not shown in thls figure s1nce,' '

as seen in figures 22(a) and 22(b), it is not necessary.

The discussion of figure 22 shows that, in order to improve all
the flight conditions in the present example with a single second-order
autopilot, a gearing ratio has to be used which is almost as large as
would be needed for an ideal autopilot that would stablllze ‘all the
flight conditions. This difficulty arises because the low-frequency
‘conditions require the highest values of* K,, as can bé seen by
examining the approximate expression for the frequency of the Dutch
roll oscillation at any flight condltlon and the assoc1ated expre551on
for Kg: .

E . (28a)

-

2

eup\Kz” - =5~ J(F = Po) ., | S

I Kx | Bg (P - Po) sa e
Ko = -5 , ok ‘ . (28b) : ‘
v Cag ng wp” - |

Because of the possibility of variations in -CnB,' CnS’ and P - Py

in the various flight conditions, it is not possiblefto'state'that in
general the low-frequency flight conditions will.require the higher
values of K, as is true in the present example. When the highest
requlred value of Ky occurs at the high-frequency conditions, the

minimum value of K for the compromise autopilot may be. con51derably ‘
below this highest required value, because the region of overlap similar ;- ,
to that shown in figure 22(b) will 1nc1ude the optlmum point for the 4
high-frequency condition. . ‘ .

'

In any case, the characteristics of the compromise autopilot can .
be obtained by plotting the regions insuring the required damping for
the various conditions at various values of K below the maximum value
of Kg, as is done in figure 22. The value of K  which leads to a
small overlap region is then the minimum compromise gearing, and the
- values in the overlap region of the {w,-plane define the poss1ble values ‘
‘for € and Wy of the compromlse autopilot. , .
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. A convenient method is available for determining the range of
values of K +to be used in obtaining the overlap region. The values of °
Ko and the optimum value of K which will yield the required damping
for each’ of the flight conditions are calculated. Then the compromise
value of K must lie between the highest optimum value of K and the
highest value of Kg. In making the plots it may soon become clear that

some of the flight conditions do not need to be considered, as happened
with case I in the present example

In the present example, it has been shown that a gain much smaller
than the largest value of Ky necessary cannot be' used, unless a vari-
able gain is available. If a constant gain must be used at all flight
conditions of such an airplane, a simple rule of thumb for designing
- the autopilot would be to choose the largest value of Kg (corre-
sponding to the low-frequency conditions) and values of ¢ and Wy
near the optimum point of the high-frequency condition. In this way
some advantage is derived from the second-order characteristics of the
autopilot in that the damping obtained from the autopilot is much larger
for the high-frequency conditions than that which would result from an

ideal autopllot with this gearlng

In applying this s1mple method, 0.1k deg/ﬁeg/sec was chosen for

the value of K, and the optimum point was found for case II. The opti-
mum point was g 0. 523 and wg, = 9. 49 radians per second. Figure 23
shows the calculated motions for the three flight conditions with this
autopllot, subsequent to a 5° sideslip disturbance. A comparison of
figure 23 with figure 21 reveals that the stability of all three flight
conditions is improved. In particular, case II is greatly improved,
while cases I and III both have T1/2 slightly.less than 1 second.

Slnce the results of figure 21(b) show that a gearing of
O 12 de%/aeg/sec could have been used, the optimum point for case 1T

was calculated for this gedring and found to be ¢t =0.485 ana

wo = 8.81 radians per second. Figure 24 shows the motions in the three
flight conditions with these autopilot characteristics. A comparison
of this figure with figure 23 reveals that the damping obtained with
this autopilot is only slightly less than the damplng obtalned4when

X = 0. lh de%/aeg/sec.

\

. If the low-frequency conditions require little improvement, the -
problem approaches that of improving only a single flight condition,

.80 that the optimum-point characteristics may be used to decrease the )

' gearing necessary. For example, suppose that Tq/o = 1.5 seconds had

been considered satisfactory for the low-frequency conditions. The
value Qf Ko necessary to obtain this damping is 0.075 de%/aeg/sed,
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and the corresponding optimum point for case II is ¢ =0.389 and

Wy = 7.4 radians per second.  The improvement of the stability of the
various flight conditions may be seen from the motions presented in fig-
ure 25. In these motions the value of Tl/2 for cases I and III is

between 1 and 1.5 seconds, but the value of Tl/2 for case II 1s well
under 1 second. :

It is clear from the previous discussion that for the present
example an autopilot with fixed characteristics would require a large
gain (correspondlng to the largest value of Kp) in order to improve
both landing and cruising flight conditions. A variable gain would
therefore be desirable, so that this excessive gearing would not have

to be used at the higher speeds. Although it would be impractical to
expect that all three autopilot parameters should be variable in flight,
as would be desirable to obtain the optimum autopilot for each flight
condition, it would be relatively simple to make the gain variable. The
value of € chosen would be that of the optimum point for the high-
frequency condition (as calculated for the low-gearing value), and the
value of w, would be preferably slightly above the optimum value of

wo, for the high-frequency condition. (Because of the rapid change in
damping at values of w, less than the optimum, in practice a safety

factor should generally be added to this value.) In such cases, prob-
ably only two gain positions would be necessary - a high gain for the
low-velocity conditions and a low gain for the high-velocity conditions.
Thus, low gain could be used in the high- velocity flight conditions, so
that the adverse effects of the autopllot in steady turns at hlgh
velocity would be small.

Validity of Assuming Pure Cp, Autopilot

T

A few final remarks will be made concerning the assumption that the
autopilot is sensitive to yawing velocities only, and provides yawing
moments only. For practical autopilot installations, the sensing device
(usually a gyroscope) is fixed in the alrplane. The device 1s therefore
sensitive to yawing velocities about some axis fixed in the airplane.
The equations of motion, however, are set up with respect to the sta-
bility axes. For various flight conditions, the angle of inclination
between the gyro axes and the stability axes varies because of the
varying angle of attack. This angle of inclination makes the gyroscope
sensitive also to rolling velocity about the stability axes. In addi-
tion, the displacement of the autopilot-actuated control surface from .
the longitudinal stability axis gives rise to rolling moments. As shown
in-reference 10, these two effects cause increments in Cnp, Czr, and

Cy due to the autopilot, in addition to the expected Cn increment.
The Cp np, effect is the most 1mportant of these in affecting the Dutch
roll stablllty of the alrplane, and thls effect will now be dlscussed.

’
PR
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Whén the stability of a single flight condition-is to be improved,
the Cnp effect may be removed by orienting the gyro axis along the

flight path, and no modification of the results is necessary. If an

angle of gyro inclination does exist, the general method of setting up
the constant-damping boundaries is, of course, still.valid. In order
to take account of the Cn effect, DV¥ is simply replaced in equa-

tion (6) by the proper 11near combination of DV and D@, as shown in -
reference 10. Because of the presence of the D¢ term-all three degrees
of freedom must be used, and the equivalent-oscillator simplification can
‘no longer be used. Thus, the method is more complicated when the Cnp

effect of the autopilot is not small enough to be neglected. When the
Cnp effect becomes excessively large, the problem.becomes even more

complicated because of the fact that the damping of the aperiodic modes
becomes important, and curves of constant damping for these modes (corre-
sponding to real roots) have to be plotted. Imn fact, the aperiodic modes
may combine to form another oscillation.

In considering the problem of simultaneously stabilizing various
flight conditions which have various angles of attack, the Cnp effect

must always be considered unless the gyro axis can somehow be rotated
so that it is always parallel to the relative-wind axis. The Cnp effect

can sometimes be ignored, if the angle-of-attack range of the flight con-
ditions is small, by choosing an orientiation of the gyroscope in such a
direction that all the angles of inclination are small. Because of the
extreme complexity of the problem when the Cnp effects must be con-

sidered, this paper is confined to the consideration of Cnr effects
only. ' '

CONCLUDING REMARKS

i

The damping of an oscillatory system that makes use of a second-
order rate damper with a given gearing ratio K can be improved by
adjusting the shape of the autopilot frequency response (that is, the.
damping ratio and the natural frequency of the autopilot). For the
purpose of determining the effect of a second-order yaw-rate damper on
the damping of the Dutch roll motion of an airplane in a given flight
condition, the airplane may be represented as an equivalent oscillator.
By using this equivalent-oscillator concept, the optimum shape of the
autopilot frequency response corresponding to a given gearing ratio or
required damping may be obtained from a simple set of equations for any
flight condition. The gearing ratio necessary to obtain a given amount
of damplng when the damping ratio and natural frequency of the autopilot
are near their optimum values is considerably less than the: gearing ratio
necessary to obtain the same amount of damping with an idealized (no-lag)
"autopilot. :
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' The problem of designing a second-order yaw damper for an alrplane
whic¢h requires improvement'in demping for several flight conditions is
more comp;icated, since for each flight condition the airplane is repre-
sented by a different equivalent oscillator. However, a simple method
of compromise is derived for flight conditions in which the effect of
the yaw-damper sensitivity to rate of roll is small enough to be
neglected. . ‘ ' :

The effects of a second-order yaw damper on the'stability of any
given flight condition of an airplane can be obtained by examining the
constant-damping curves in the plane of the dampihg ratio and natural
frequency of the autopilot and in the plane of the gearing ratio and
natural frequency of the autopilot.. Theoretically, any given flight
condition may be stabilized by using either positive or negative gearing.
When negative gearing is used, the autopilot natural frequency must be
less than the airplane frequency. The use of negatiVe gearing is shown
to be impractical, however. For positive gearing, the autopilot natural
frequency must be greater than the airplane frequency. \
: For fixed positive gearing, there is an infinite nuwber of combi-
nations of autopilot natural frequency and damping ratio for which the
second-order autopilot gives better damping than an ideal autopilot of
the same gearing. For fixed positive damping ratio of the autopilot,
there is a range of values of positive gearing ratio which will provide
a given damping to the system at any autopilot natural frequency greater
than the airplane frequency. Increasing the gearing ratio of the auto-
pilot to excessive values will always cause the autopilot mode of oscil-
lation to become unstable for a given damping ratio and natural frequency
of the autopilot. If larger gearing ratios are to be used in order to '
.obtain higher stability for the airplane mode, the dasmping ratio or the
natural frequency of the autopilot, or both, must be increased. Expres-
sions are derived for the maximum damping under various conditions.

Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics,
Langley Field, Va., October 2, 1952. -
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APPENDIX A

EXPRESSIONS FOR éONSTANT-DAMPING CURVES AND DISCUSSION

OF EQUIVAiENT-OSCILLATOR CONCEPT

"Since the characterlstic equation of the airplane-damper system is
of sixth degree, as given in equatlon (7), it may be written

F(D) = D° + AsD® + A" + A3D3 +AD2 + AD + A5 =0 (A1)

Here A5, Ay, . AO are functions of K, ¢, and w, for a flight

condition in which the’ alrplane parameters in equations (3) to (5) are
known. If any one of the three autopilot parameters is fixed, stability
boundaries may be obtained in the plane defined by the other two param-
eters by letting D =R + iw, fixing the value of R for each curve,.
and varying w. Since equation (Al) is a complex equation, it may be
written as two real equations and solved for the two autopilot varlable
parameters at each value of D =R + iw.

According to reference 6, if

n!

£o(R) - L Qgiﬁﬁl (a=1,2,3,0)  (42)

then the two real equations obtained from equation (Al) by setting .
D equal to R + 1w are

F(R) - a)2f2(R) + a)hfh(R) -af = o‘ - (A3)

£1(R) - of5(R) + whf5( ) =0 o | (Ak)

~ Since the coefficients of F(R) and fn(R) are functions of the

two variable autopilot parameters only, the values of these two param-
eters which will yield an oscillatory mode of motion with a given
damping may be obtalned by choosing a value for R. and solving equa-
tions (A3) and (AL) at any value of ®. This procedure ylelds a point
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on the given R curve in the parameter plane; for instance, in the
wo-plane if § and g be chosen as the variable parameters. In this
case, calculations are simplified by the use in equations (A3) and (Al)
of A and B as defined in equation (1), since these equatlons become
11near in A and B. v :

Because of the increasing difficulty of obtaining accurate values
of stability derivatives for present-day airplanes, the characteristics
of the airplane may be given in terms of transfer functions which are
obtained from flight data. In order to obtain the form of the char-
acteristic equation in terms of transfer functions, equation (7) is

divided through by (D2 + 28w,D + wbvao(D). The resulting equation is

v 22 ¥ 3
o ~(oup-Y oy Voumk, D% X ¢, D)+ = ¢
w? e (en- T oy ) (ol g5 cup) v ey,

l- '——Cn
D2 + 2bw D+ w2 |2 O : - Fo(D)

The first factor in the second term of this equation is the'autopilot
transfer function [S%ﬂ (D) (See eq. 8.) 1If equations (3) to (5) are
P : .

solved operationally for zero initial conditions, the expression in
brackets is found tq be the airplane transfer function:

Y 22 V. L V3
5 |a b2 B " Fo(D) | ‘ |

Therefore, the characteristic equation may'be written

5 DY oy _ - |
oo e

in terms of the autopilot and airplane transfer functions. - The airplane.
transfer function for the lateral motion, as shown in equation (A5),
should have the form of a cubic in D over a quartic in D. Therefore,
when equation (A6) is cleared of fractions a sixth-degree equation of
the form of equatlon (A1) is agaln obtained as the characterlstlc
equatlon.\ ‘
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The setup and solution of equations (A3) and (AL) would be greatly
simplified if the characteristics of the airplane lateral motion could
be expressed as a second-order system rather than a fourth-order system.
Since the yaw damper is used essentially for damping the Dutch roll ‘
oscillation, it was thought desirable to see whether the ajirplane could
be replaced by an equivalent oscillator whose damping and period were
those of the Dutch roll oscillation of the airplane. That is, if the
Dutch roll mode, as.calculated when three degrees of freedom are con-

.sidered, is obtained from the quadratic equation D2 + PD + Qg ='O,
the question is whether the airplane characteristics may be represented
by the oscillator described by

2

K
2u Kz - E}%" (0 + Bpp + %) = 0
Ky |

Equation (A5) may be rewritten in the form

) ¥ np il o
[?I (D) - 2 o (D + al)(D + a,D + a3)_
®_la . 2 D(D2 D+ ) |
b KX “
B -C1D (D.+ al)(D2 + agD + a3) (A?j
D2 + P.D + Q, D(D2 + apd + 'a5) c

‘where the constant Cl is defined by
2
veC
U5

Cl = -
Ky 2
gbeub(Kzz i L)

2
Ky

The expression in the first bracket on the right-hand side of equa-
tion (A7) is the same as would be obtained for [%g] (D)' if the assump-
A ) {

tion were made that the airplane could be represented by thé equivalent
oscillator described previously. Thus, if the expression in the second
bracket has a frequency response which does not significantly differ
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from unity for the range of frequenc1es which is 1mportant in the air-
Plane frequency response, then the expression in the first bracket can
be used as a valid approximation to the airplane frequency response.
Therefore, the expression in the second bracket can be considered as a
correctlon functlon. »

N

The factor D2 + ahD + as ylelds the two real characterlstlc roots

of the airplane lateral motion corresponding to the spiral mode and the
‘damplng-ln -roll mode. The usual approximation to the damplng-ln -roll

root is vCy /&bubKXE, and the splral root is of the order of VCYB/2bub

.However, the numerator of the second bracket can be shown to be

C 5 C, C B CeCy
3.y, b e, Yy v Tl
"b\2u 2 2 2 .3y 2.2

b Ky Lh 8ubKX | b3 Ly, K

If CiB = 0, this cubic has the roots

. oy, | o
D=0 p=-—LY ‘ p=—2_-1

which are merely approximations to the real roots which occur in the
cubic in the denominator of equation (A7). It can therefore be expected
that the second bracket will usually be close to unity and that no large
errors will arise if the airplane lateral motlon is represented by a
single-degree-of- freedom oscillator ‘in yaw w1th nondimensional inertia

< 2 szg> - « . : | : '
2up{Kg“= - E_E_ and the same period and damping as the Dutch roll oscil-

D¢

lation. This is espec1ally true for small values of CZB

For the airplane used as an example in this paper, the correctlon
2
(D + al)(D +apD + a3)

(D + ahD +,35)_

quency range and its effect on the total airplane transfer function was
found to be very small except close to zero frequency. Finally, actual
comparisons of the stability boundaries for the three- -degree-of-freedom
analysis and the equ1valent-osc1llator approximation showed that the
approximation was valid. , .

function was evaluated throughout the fre-
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* When equation (A7) is used with this approximation, the character-
istic equation as given in equation (A6) becomes C

o N ew

LDE‘+ 2twyD + %QJEQ + P.D + chl

or
2 KgP\ro 2 oy ¥R oo,
2ub KZ ——-—2—-(D +P0D+QO)(D +2§(DOD +‘(DO) -—EKU)O CnD‘=O
Kx - b ‘
‘ (48)
The characteristic equation of the system is therefore a Quartic,
F(D) = D* + (Po + e_gwo)n3 + (Q + w? + egwopo)nadr
(Poo® + 2wgQg + C1K0E)D + Qun,2
=p*+ (Po + A)D3 + (Qo +B + APODDE +
(PB + QoA + C1KB)D + QB

=0 - “" (a9)

The equations for the stability boundafies which replace equa-
tion (A3) and equation (AL) for a fourth-order characteristic equation
are »

F(R) - oPfy(R) + o = 0 | B (A10)

£1(R) - w2f3(R) =0 N | (411)

The functions £ (R) are obtained from equation (A2).
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As an example, the actual parametric equations used for the equiva-
lent oscillator will be derlved Equation (A9) is used in equation (A2)
to give v , '

f1(R) = 43 + 3R2(PO + A) + QR(QO + B + APo) + (Py + ciK)B + QoA
£5(R) = 6R® + 3R(P, + A) + Gy + PoA + B
fS(R) = 4R + Py + A

These expressions are used in equations (A10) and (A11). To obtain the
constant-K curves (that is, curves in the AB-plane or Cwo-plane), the

resulting equations are written in A and B as follows:

E3R + Po)a® - R(R2 + PoR + QoﬂA +'{w2 - Ezg + (B clKjR + QEI}B =

o* - (682 + 3PcR + QO);DE +R2(R2 + PR + QO)’ o _ (A12)

\

1

l})? - (382 + 2pgR + QOHA - (2R + P, + C1K)B =
~(4R + Poye? + R(1R2 + PR+ 2Q) (A13)

For a given value of K, any constant-damping curve is obtained by
fixing R at the appropriate value and taking a sufficient number of
positive values for w +to obtain the points necessary to determine the
curve. The resulting two linear equations in A and B are solved to
obtain each point. If curves in the {wy-plane are desired instead, the
values of € and wp can be obtained for each set of values of A
and B for which B  is positive. ’

The constant-{ curves in the Kmo-plane are obtained by solv1ng the
parametric equations for K and g 1nstead of for A and B. For
example, solving equation (A13) for K gives'
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1 ' ' .
K = qﬁ{(A + P, + hR)u)Q - EPO + 2R)B + (Qo + 2P,R + 3R2)A + “

R(éQO + 3PR + AREH} -

-1
' 'CImo

FRV(EIQO + 3PgR + lmeil} _ o (A1)

2lwy + Py + UR)w® - |(P, + 2R wo2 + 2twg Qo + PoR + 3R® +
5 ( )

and using this equation in equation (A12) gives

(0 - R2- 0?)B - (Po + 2R) (02 + B2 A+ ot - (0o + 28R +282) (P4 R2) =

(Qo -R°- coa)coo2 - 2§wO(Po + QR) (w2 + RQ) + ok - (Qo + QfoR + 2R2.>(a>2 + Re) = 0
| (A15)

This equation is a quadratic in wo for fixed values of ¢, R,
and . The values of wo from equation (Al5) are then used in equa-
tion (Al%) to obtain the points on the curves in the Kwg-plane. - Since
‘equations (A12) and (A13) are linear, there is only one point in the
AB-plane or the gbo-plane for each oscillatory mode when K is fixed.

However, for a fixed value of ¢ there may be two points in the :
. Kig-plane for a given oscillatory mode when the quadratic equation (A15)
“has two real, positive roots for W :
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APPENDIX B

’ . ) )

DERIVATION OF‘EXPRESSIONS FOR MAXIMUM-DAMPING
CHARACTERISTICS WITH FIXED GEARING RATIO |
BY USE OF EQUIVALENT-OSCILIATOR CONCEPT
The characteristic equation of the airplane-—yaw'damper system,
for the assumption that the alrplane may be replaced by an equlvalent
oscillator, is
D* + (B + &)D3 + (Qo + B + AP,)D? + (PoB + AQq + C1KB)D + QuB =
\ (Bla)
The.conditions on A and .B which result in the maximum damfing for:
a given gearing ratio can be calculated as follows. ¥For the case of

maximum damping, equation (Bla) will have two pairs of equal complex
roots;. hence this equation becomes:

(D? + PD + Q)é = D“—+ 2PD3 + ~(P2- + 2Q)D2 + 2PQD +Q2 ‘, (B1b)

where D2-+ PD + Q is the‘quadratic corresponding to the double oscil-
latory root at the cusp point. The following four equatlons are obtalned
by equating like coeff1c1ents in equation (Blb):

2 Py, + A a . (B2)
P2 +2Q = Q, +B + AP o - (B3)
2PQ = P,B + AQ, + C1KB (BY)

@° = QB - . (B5)

Since K, C3;, Py, and Qy are known, these four independent equations

pay be solved for A, B, P, and Q. Thus, the autopilot parameters j
- which will give the highest damplng to the Dutch roll osc1llatlon, and
also the period and damping of this osc1llatlon, may be determined.
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From equations (B2) and (B5)

A=2P-P, o ‘_ (B6)".
- & :
B - | (BT)

Using equations (B6) and (B7) in equation (BY) yields

1:" ) (Po + ClK)Q2 - PoQO? o (BS)
2Q(Q - Qo)~ |

When equations (B6) and (B7) are used in equatlon (B3), the result may
be wrltten

(P - )T = (@ - q)° | | (89)

and by substituting equation (B8) into equatlon (B9) a quartic equatlon
in Q is obtained, Wthh may be written '

2

EO(Q - QO)E. + ClKQ2] = !}QO(Q - Qo')lIL

4

Finally, this equation yields the two quadratics in Q:

1+—2 1@ -290+02=0 (B10)
Po * 2, | o |

Evaluation of the discriminant of equation (B10) reveals that equa-
tion (B10) has only two real roots, one less than. Qo and the other

greater than Qp- As can be seen from figure 6, the smaller value of Q

(which yields a smaller value of wo) corresponds to the breakdown of the
unstable loops for positive K. The larger real root of equation (B10)
is therefore the one which yields the maximum-damping point for positive
gearing ratio. Negative gearing ratios will be discussed subsequently

The corresponding value of P 1is obtained by substituting this
: larger root into equation (B8), and the maximum-damping point in the
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AB-plane is easily obtained from equations (B6) and (BT). Thus, the
value of the maximum damping of the Dutch roll oscillation obtainable
with a given gearing ratio, 'and also the values of autopilot frequency
and damping which will yield this maximum damping, may be obtained by
simply solving a quadratic equation (eg. (B10)).

The procedure is even simpler when the required damping is given
and the values for the autopilot parameters which would make this
damping the maximum damping are to be determined. The value of P 1is
determined by the required damping, since '

1. 386
Ty/2

,.P,= -2R = (B11)

~and the correspondlng optlmum value of A may be obtalned from equa-
tion (B6) - Equation (B9) now gives :

o ¥ & (P - Po) - (212)

Both values of Q@ obtained from equation (B12) correspond to optimum
points, since they both ¢orrespond to the given positive value of
damping. These values may now be used in equation (B7) to obtain the
corresponding values of B. Finally, the two values of gearlng ratio
may be obtained from equation (B8), which gives

2PQ - P.B - A |
K = < ° % (B13)

' The smaller values of @ (obtained from using the minus sign in
(B12)) result in negative values of gearing ratio and values of wo
less than the airplane frequency. The possibility of using negative
gearing to improve the damping is discussed further in the body of the
paper.
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TABLE I

- PARAMETERS OF AIRPLANE USED AS EXAMPLE TO ILLUSTRATE

' USE OF CONSTANT-DAMPING CURVES

ATt16Ude, T5 o o & o o v o e e b e e e e e e e e e . 30,000
Wing loading, 1b/sq ft R T R 65
V, FE/56C + « ¢ v v v v v i e e e e e e e e e e e e e e e e e e 9T
By TE v e e e e e e e e e e e e e e e, 2B
& P T T I I . 0.23
‘ : , | '80.7
O K2 « « v e e e e e e e e e e e e e e e e 0.009T -
Kp2 « o e e v i et e e e e e e e e e e e e e .. 0.0513
| ' . -0.00145
'CZP, per radian . . . . . . . . . .. o T I
Cy,., Per radian . . S B o
Cnp, Per radian . . . o . . .o v . e e e e e e e . =0.02
Cnr’ per radian . . o e v e e e e e e e e e e e e e e e -0.ko
CYE, per radian . . . . .o 0. .o . ﬁb. e e e e e e - -1.0
CnB; per radian . . . e e e e e e e e e e e e e e e .+ 0.25
CZB’ DET TAAIAN « v v v e e e e e e e e e e e e e e .. . . -0.126
Cng» per radiln . .+ .+ . 4 4 4 e e e e e e e e s e e e o+ e =0.163

Period, SEC « v v v o o o 4 v e e e e e e e e e e e e e . 1.3
T1/ps BEC « o v v v e de e e e e e 2.6

) séc‘; VO PR o I8 % 1
Qo"S¢C-2 e i e e e I A Ce 23.84

Oy 86C™2 i e e e e e e 15,98

~
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TABLE IT ’

PARAMETERS USED FOR THREE TYPICAL FLIGHT CONDITIONS OF THE .

AIRPLANE IN DESIGN OF COMPROMISE YAW-RATE DAMPER

Case I ' Case IT  Case III

Altitude, ft . . + . + . . . . . . Sea level 30,000 . 30,000
Mach number e e e e e e e e e - 0.22 0.5 ‘ 0.5 =
Wing loading, 1b/sq ft « v « . . . 54 - 65 - 85
Bp oo oo e e e 25.2 81.25 106,3
K o« oo s oo ...... 0.0081°  0.0069  0:0051
Kz2 « o v e e e .o ... .. 0.0833 - -.0.0b19 0.0409
KXZ + » = = s o o« v s o v o« o . - 0.0027 © 0.0025 ©0.0010
CL v ¢ ¢ o e e v e e e e e e e 0.765 - 0.262 0.771
Chg v v v v v et 0.205 ~0.205 - o0.212
Cag v o+ s+ s v v e v v v oo =0.099 -0.107 - -0.095

L T -0.930 © -0.878 -0.884

] R .. -0.425  -0.4Th -0.435

Cg s e e e e e e ... 0288 0.200 0.300
Chp + ¢ v+ v+ oo v oo 0.003 0.010 0.003
Cop + v v+ v e e e =0.165 -0.150  -0.165
Cng — .. -0.163 -0.163 -0.163
‘Period, S€C . . 4 4 e 4 we . .. 2.3 . 1.b 24
T1/ps 8€C « v v v oo oo 2.0 6.9 -_}a.u
Poy 8677 L i i e . 0.70%  0.200 . 0.573
I I A 00 - U0 S W -
Cprosec™ oL, 5.63 7.0 5.92
V/b, sec™h L oL Lo 868 o 26.6% . 17.7T
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. Figure 11.- Values of autopilot gearing ratio'necve'ssary to obtain a.
given damping as the maximum damping.
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| . ] ' [

Zz 3 Z
1, sec

- Figure 19.- Airplane and rudder motions with- autopilot designed for
‘ maximum possible damping with ¢ = 0.3. K = 0.5386 de%/aeg/sec;
Wg =.33.3 radians per second; §'= 0.3. , .
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Flgure 22, - Boundarles of the region where T1/2 < 1.00 second in the

Cwo-plane for three flight conditions of the alrplane when a yaw
damper with three different gearlngs is used
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